FINAL EXAM

ISI BANGALORE

NOVEMBER 2014

Algebra III

100 Points

Notes.

(a) Begin each answer on a separate sheet and ensure that the answers to all the parts to a question are arranged contiguously.

- (b) Assume only those results that have been proved in class. All other steps should be justified.
- (c) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers \mathbb{C} = complex numbers.
- 1. [10 points] Find an $n \times n$ matrix over \mathbb{Q} whose characteristic polynomial is

$$\sum_{i=1}^{n+1} iX^{n-i+1} = X^n + 2X^{n-1} + \dots + (n+1).$$

2. [12 points] Let G be the abelian group generated by x, y, z satisfying the relations

 $3x + 2y + 8z = 0, \qquad 2x + 4z = 0.$

Write G as a direct product of cyclic groups.

3. [20 points] Which of the following are algebraic integers? (Give brief justifications for your answers.) $\sqrt{2} + 1$, $2(2^{1/3}) - 1$, $(\sqrt{3} + 1)/2$, $(\sqrt{5} + 1)/2$.

4. [16 points]

Using factorization in the ring of Gaussian integers, find all the different ways of writing $1105 = 5 \cdot 13 \cdot 17$ as a sum of two squares in \mathbb{Z} . DO NOT give an answer via a brute force calculation of squares in \mathbb{Z} .

5. [6 points] Factor 7 + i as a product of primes in $\mathbb{Z}[i]$.

6. [15 points] Suppose f(x) is a monic polynomial of degree 3 in $\mathbb{Z}[X]$ and suppose there exists a prime p in \mathbb{Z} such that p does not divide the product $f(0) \cdot f(1) \cdots f(p-1)$. Prove that f is irreducible over \mathbb{Q} .

7. [6 points] Prove that there are infinitely many units in the ring $\mathbb{Z}[\sqrt{3}]$. (Hint: $2 + \sqrt{3}$ is a unit.)

8. [15 points] Let L be a non-constant linear polynomial in $\mathbb{R}[X, Y]$. Prove that $(X^2 + Y^2 + 1, L)$ is a maximal ideal in $\mathbb{R}[X, Y]$.